Background

The art of designing and building RF power amplifier applications

Martijn Brethouwer is an RF design engineer at Bruco Integrated Circuits.

Mark Gortemaker is the sales and business development manager at Bruco Integrated Circuits.

Reading time: 5 minutes

Market demand for higher speeds and larger bandwidths drives the move from 4G to 5G. Going to higher frequencies makes the power amplifier application design even more challenging. For the customers of Ampleon, Bruco Integrated Circuits develops efficient PA modules for 4G/5G base station applications in the range of 0.6-4 GHz.

Featuring lower latency, higher capacity and increased bandwidth, 5G is a significant evolution of today’s 4G LTE (Long-Term Evolution) standard. The 5th generation of mobile networks has been designed to meet the steep growth in data and connectivity demand of modern society, the ever-expanding internet of things with billions of connected devices and tomorrow’s innovations. They’ll initially operate in conjunction with existing 4G networks before evolving to fully stand-alone networks in subsequent releases and coverage expansions.

5G applications operate in three frequency bands. The low-band (600-700 MHz) base station tower has a large area coverage with a ten kilometer radius, combined with a narrow bandwidth and speeds of 30-250 Mb/s. In the mid-band (3.4-3.8 GHz in Europe), the tower covers a radius of four kilometers and supports 100-900 Mb/s. Together, these are called sub-6 GHz bands. The high band (26-27.5 GHz) in the millimeter-wave (mm-wave) spectrum services a radius of less than one kilometer with typical speeds of 1-3 Gb/s. Higher frequencies bring higher bandwidth and speed, but lower area coverage.

This article is exclusively available to premium members of Bits&Chips. Already a premium member? Please log in. Not yet a premium member? Become one for only €15 and enjoy all the benefits.

Login

Related content