

System engineering for SMART: Accelerator-based, high-volume production of medical isotopes

JOHANNES JOBST SYSTEM ENGINEER AT DEMCON

Medical Radioisotopes

TECHNETCIUM-99M

- For diagnostic imaging with SPECT scans
- > 2/3 of nuclear imaging uses Tc-99m
- >35 million procedures yearly worldwide
- Half-life of 6 hrs

PARENT ISOTOPE: MOLYBDENUM

- Mo-99 $\xrightarrow{\beta^- \gamma}$ Tc-99m
- Half-life of 66 hrs

Made by DEMCON Nymus3D

Production of medical isotope Tc-99m

Current technology: using Nuclear reactors

75 MeV electrons

SMART Factory

- Factory: size of soccer field
- Cryogenic accelerator cavities
- 3 MW electron beam
- Modular target with robotic handling
- Target cooling with liquid sodium
- Radioactivity and radiation

Project history & planning

Concurrent engineering

Demonstration of technical feasibility

Concept engineering

CAPEX & OPEX estimate

- Goal: Speed up development to reach production milestone
- Risk: concepts worked out 'too' far and then discarded
- Regulatory requirements around radioactivity evolve with concepts
- Many requirements are discovered and changed during feasibility and design iteration

Concurrent engineering

Concept choice: Concept change: gas cooled target Na cooled target Analyze and optimize target design Analyze and optimize target design **POP** gas separation **Design for manufacturing** Manufacturing of target **Manufacturing of target components** components **Quantitative radiation damage tests** POP free outflow (water) **Verification Na cooling Reduced-size demonstrator**

Concept verification RADIATION DAMAGE

- Miniaturized version of SMART exposure unit
 - Size of target is 1:1000
 - Full power density and radiation damage

Goals

- Verify robustness of design against combined effect of radiation damage and liquid sodium
- Demonstrate feasibility of SMART concept

Successful demonstration of the concept

Requirements

Two customer requirements (non-negotiable for business case) largely drive system complexity

- Mo99 yield (Ci/harvest)
 - 75 MeV, 40 mA \rightarrow 3 MW electron beam
 - Mo target needs ~1 week of electron exposure to reach required activity
- Mo99 yield density (Ci/g)
 - Compact Mo target size
 → extreme heat load & radiation damage
- Together → reduce decay losses
 - 23/7 in operation
 - <1 h per day for Mo harvest/replenish</p>
 - Few maintenance days per year

Verification of Na cooling

Challenges

- 2 MW in a matchbox-sized target
- Power density
 - → light saber from Starwars

Solution

- Cooling with liquid sodium
 - Good cooling, melting point <100°C
 - Flammable and chemical aggressive

Concept verification LIQUID SODIUM COOLING

- Sodium cooling test circuit
- Designed and built-up at DEMCON site in Best for this project

Verification goals

- Cooling concept
- Sodium corrosion
- Fluid dynamics of liquid Na

Liquid Na: fluid dynamics and free-outflow

CFD and verification

- Targets have complex shape and cooling is critical
- CFD of liquid Na (<10% error)
- Verified by experiment

Free-outflow

- Na ejects into vacuum chamber
 → difficult to model with CFD
- Analytical predictions verified by experiment

Teams and cooperation

- Project wide
 - 5 main partners (IRE, ASML, Demcon, RI, CEA)
 - In 4 different countries
 - Many industrial and academic partners world-wide
 - → define clear scope
 - → look beyond own scope to optimize system

@ Gary Varvel.

Teams and cooperation

- Project wide
 - 5 main partners (IRE, ASML, Demcon, RI, CEA)
 - In 4 different countries
 - Many industrial and academic partners world-wide
 - → define clear scope
 - → look beyond own scope to optimize system
- At Demcon
 - Large team (~80 people)
 - Multiple locations
 - Multi-disciplinary
 - Specialized know-how
- → communication is key!

ENGINEERING DISCIPLINES AT DEMCON FOR SMART

Managing complex interfaces

Goal

- Concrete agreements
- Accommodate uncertainty of concurrent engineering

Approach

- Weekly bilateral meetings
- Living interface documents

Example

- Beam properties defined early
- Baseline for achievable tolerances later
- Exact position of interface moved late
- Location of pumps moved across interface
 - → change of scope

Factory design with required reliability

Challenges

- 24/7, year-round
- In complex environment
- Hot, activated target

Solution

- Modular design
- Servicing during operation
- Automated harvesting

