Background

Escalating complexity thwarts industrialization of non-nuclear radioisotope production

Paul van Gerven
Reading time: 9 minutes

Ballooning cooling requirements killed ASML’s concept to manufacture radioisotopes outside nuclear reactors. Not because the system doesn’t work, but because it was getting too expensive.

In 2012, things didn’t look good for the European production of radioisotopes, the man-made radioactive elements used for medical imaging and radiotherapy. Europe’s aging research reactors producing these essential ingredients in nuclear medicine were heading for either elaborate refurbishments or permanent decommissioning. “There was a real concern that by the mid to late 2020s, there wouldn’t be enough capacity left,” says Erich Kollegger, CEO of the Institut National des Radioéléments (IRE), one of two European organizations that extract and purify radioisotopes from enriched uranium samples after irradiation at a nuclear facility.

For a robust supply of radioisotopes, at least two nuclear reactors are required. The reason is simple: it’s impossible to keep stock of a material that decays in a matter of days. So, while one reactor is refueling or performing minor maintenance actions, another is in full operation. Currently, three reactors take turns supplying raw isotope mixtures to IRE. This is how the Belgian non-profit organization manages to deliver batches of radioisotopes to facilities around the world every week, 52 weeks per year. Most of the time, that is, since there have been a few supply disruptions due to unforeseen reactor downtime over the past decade.

This article is exclusively available to premium members of Bits&Chips. Already a premium member? Please log in. Not yet a premium member? Become one and enjoy all the benefits.

Login

Related content